AI-Powered Visual Representation

The platform uses advanced AI to create meaningful visualizations of conservation progress through different tree growth stages:

class AITreeGrowthEngine:
    def __init__(self):
        self.growth_predictor = TreeGrowthPredictor()
        self.environment_simulator = EnvironmentSimulator()
        self.impact_analyzer = ConservationImpactAnalyzer()
        
    async def simulate_tree_growth(self, tree_data, environmental_data):
        # AI determines optimal growth patterns
        growth_pattern = await self.growth_predictor.predict_next_stage(
            tree_data,
            environmental_data
        )
        
        # Simulate environmental conditions
        env_conditions = self.environment_simulator.generate_conditions(
            growth_pattern
        )
        
        # Update tree visualization
        return self.update_tree_stage(growth_pattern, env_conditions)
        
    def update_tree_stage(self, growth_pattern, conditions):
        stages = {
            'sapling': self.generate_sapling_visuals,
            'medium': self.generate_medium_tree_visuals,
            'mature': self.generate_large_tree_visuals
        }
        return stages[growth_pattern.stage](conditions)

Growth Stages

1

Saplings

Represent new conservation initiatives

2

Medium Trees

Show developing projects

3

Large Trees

Indicate mature conservation success

Last updated